Header Ads

  • Highlights

    👩🏻‍💻 Hello Readers 🧑🏻‍💻!!! Would you like to Explore more ? Hit on ⓘ(Ads)... ✨🌹

    Examples based on Context Free Grammar


    Let Us Understand Context-free grammar by a few examples :


    Example 1:

    Construct the Context Free Grammar for the language having any number of a's over the set ∑= {a}.

    Solution:

    As we know the regular expression for the above language is

    r.e. = a*     

    Production rule for the Regular expression

    is as follows:

    S → aS    rule 1  

    S → ε     rule 2  

    Now if we want to derive a string "aaaaaa", we can start with start symbols.

     S  

    aS   

    aaS          rule 1  

    aaaS         rule 1  

    aaaaS        rule 1  

    aaaaaS       rule 1  

    aaaaaaS      rule 1  

    aaaaaaε      rule 2  

    aaaaaa  

    The r.e. = a* can generate a set of string {ε, a, aa, aaa,.....}. We can have a null string because S is a start symbol and rule 2 gives S → ε.

     

    Example 2:

    Construct a CFG for the regular expression (0+1)*

    Solution:

    The CFG can be given by,

    Production rule (P):  

    S → 0S | 1S  

    S → ε  

    The rules are in the combination of 0's and 1's with the start symbol. Since (0+1)* indicates {ε, 0, 1, 01, 10, 00, 11, ....}. In this set, ε is a string, so in the rule, we can set the rule S → ε.

     

    Example 3:

    Construct a CFG for a language L = {wcwR | where w € (a, b)*}.

    Solution:

    The string that can be generated for a given language is {aacaa, bcb, abcba, bacab, abbcbba, ....}

    The grammar could be:

    S → aSa   rule 1  

    S → bSb   rule 2  

    S → c        rule 3  

    Now if we want to derive a string "abbcbba", we can start with start symbols.

    1.    S → aSa   

    2.    S → abSba       from rule 2  

    3.    S → abbSbba     from rule 2  

    4.    S → abbcbba     from rule 3  

    Thus any of this kind of string can be derived from the given production rules.

    Example 4:

    Construct a CFG for the language L = anb2n where n>=1.

    Solution:

    The string that can be generated for a given language is {abb, aabbbb, aaabbbbbb....}.

    The grammar could be:

    S → aSbb | abb  

    Now if we want to derive a string "aabbbb", we can start with start symbols.

    S → aSbb  

    S → aabbbb    


     

    Also, Study about: 

    Also Read, some interview tips

    No comments

    Post Bottom Ad

    Powered by Blogger.